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Imagine an Interplanetary Future 
Where - 

•  d-He3  fusion produces most of Earth’s energy needs without 
radioactivity or carbon emissions 

•  Space transportation has been revolutionized by an efficient fusion 
propulsion system with exhaust velocity up to 0.088 c  

•  Space commerce is stimulated by the existence of an interplanetary 
cargo worth $3-M a kilogram 

•  Unmanned probes travel to the nearest star systems with flight times 
less than a human lifetime 
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He-3 Fusion for Energy & Propulsion 
d + He3 --> p + He4 

 
•  reactants are stable and storable 
•  products are energetic, charged and stable 

–  Efficient electrical generation from MHD 
–  No activation and embrittlement of reactor vessel 
–  Efficient conversion to thrust with exhaust velocity up to 

0.088 c --> ~50 yr interstellar flight using known physics. 
•  3.6x1014 J/kg of d-He3 mixture = 1.0x108 kWh/kg 

–  Fuel is about 20% of the kWh cost of electricity 
–  If electricity is 15¢/kWh then He3 has a value of $3M/kg 

He-3 is one of the few commodities worth interplanetary freight costs 
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Why Outer Planets for He-3? 

•  Earth: breeding of tritium from either isotope of lithium 
by neutron bombardment, tritons decay to He-3.   
–  Containment, waste problems same as d-t fission.   
–  USA has no current capability.   
–  Lithium inventory? 

•  Moon:  solar wind implanted in regolith, 10 ppb (10-8) 
by mass in uppermost few meters.  ~1000 yr of 2001 
energy needs- a starter catalyst?. 

•  Outer planets:  primordial He3, ~10 parts per million 
(10-5), ~109 yr of 2001 energy needs- the ultimate 
energy source?. 
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Which Outer Planet-Jupiter 
Pro: 
•  Closest to Earth and Sun 
Con: 
•  Huge gravity means return vehicle has mass 

ratio >20 (nuclear thermal Isp = 900 s) 
–  No mass budget left for cargo! 

•  A lot hotter at a any given density 
–  Galileo probe killed by heat not by pressure 
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Which Outer Planet-Saturn 
Pro: 
•  Not as far as Uranus and Neptune 
•  Rapid rotation substantially reduces ΔV to orbit 
Con: 
•  Seen as depleted ~5x in Helium compared to 

other outer planets 
–  reanalysis of Voyager data 20 yr later restores that 

5x- maybe 
–  won’t know for sure until we send an entry probe 

•  Rings as a navigation hazard 
–  need close-in, co-orbiting mission to look 
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Which Outer Planet-Uranus 
Pro 
•  Primordial He3 abundance ? 
•  ΔV to orbit requires mass ratio < 5 
•  Closer than Neptune 
Con 
•  Axial tilt complicates interplanetary travel 
•  Twice as far from Earth as Saturn 
Uranus may be the closest planet without major possible 
problems -- but we must return to both Saturn to be sure 
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Do we really know how much 
He3 is there? 

•  He3/He4 cannot be measured by remote 
sensing 

•  He3/H2 and He3/He4 ratios have been 
measured in situ only by Galileo at Jupiter 

•  He3/He4 ratio of 10-4 to 1.5x10-4 from 
meteors, solar wind, cosmology 

•  Use Galileo results for He3/He4 = 10-4 and 
Voyager results (?) for He4/H2  
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•  Balloon diameter :     80 m  
•  Total Plant mass:  146 tonnes 
•  Return vehicle:     59 tonnes 
•  Total lift needed:   205 tonnes 

He3 plant 

reactor 

Balloon 

Insulation 

He-3 Mining with Balloons 
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Notional Distillation Plant Concept 
Thinking Big about our Space Cryogenics Future 

pump Heat exchanger 

LHe 4.2K 

X3=10-4
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X3 = He-3/He-4 ratio 
G = gas 
L = liquid 

GHe 
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Energy Economics 
He3/H2 = 10 ppm 

Table 1

Stage Process Energy (J)/g He3
1, 2, 3 cool atmosphere to 16 K 7.2x107

3 liquify H2 at 16 K 3.2x108

5 cool He from 16 K to 4.2 K 1.3x107

5 liquify He at 4.2 K 1.1x107

6 cool LHe from 4.2 to 1.2 K 1.2x107

total 4.3x108

Transportation on 2 yr trajectory: 5x107J/g He3 
Energy released:  6x1011 J/g He3 
Theoretical energy payback: ~1000 
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To Earth 

Base for 
Maintenance 
Operations 
Starship Fueling 

He3 tanker 

He3 distillation plant 

reactor 

Balloon 
volume 

Mining aerostat 

Nuclear ramjet/rocket 
return vehicle 

To Stars 

The Persian Gulf of the Solar System, 2150 

The most valuable interplanetary commodities are refined He-3, 
deuterium, and heavy metals 
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Next Steps 

•  Jupiter Icy Moons Orbiter (JIMO)  
–  nuclear fission-powered 
–  electric propulsion flight system 
–  Big deal:  20 tonnes, >$4 B, 10 kWe 
–  First of a series:  Project Prometheus 

•  Saturn Ring Observer 
•  Uranus/Neptune Orbiter with Probes 
•  Self-deploying balloon probes for Mars, Titan 
•  Discovery/New Frontiers missions to other resource 

sites (Moon, asteroids, comets) for interplanetary 
commodity economy 

http://www.jpl.nasa.gov/jimo/gallery.cfm 
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A Trial Balloon ? 
Scientific balloon missions to outer planets, using  
Pu RTGs and/or O2 burners, to study 

•  He3/He4 and He/H2 ratio 
•  pressure vs. temperature for 1 < p < 100 bar 
•  trace gas composition 
•  entry, deployment, and telemetry engineering experiments 

 
A science balloon could be as small as 2.8 m 

diameter, and use at most 7 kg of Plutonium as a heat 
and power source 


